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ABSTRACT

The autonomous alignment of synchrotron beamlines is typically a high-dimensional, high-overhead optimization
problem, requiring us to predict a fitness function in many dimensions using relatively few data points. A model
that performs well under these conditions is a Gaussian process, upon which we can apply the framework of
classical Bayesian optimization methods. We show that even with no prior data, a tailored Bayesian optimization
algorithm is capable of autonomously aligning up to eight dimensions of a digital twin of the TES beamline at
NSLS-II in only a few minutes. We implement this approach in a software package for automatic beamline
alignment, which is available out-of-the-box for any facility that leverages the Bluesky environment for beamline
manipulation and data acquisition.
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1. INTRODUCTION

Manual alignment of synchrotron beamlines is typically a time-consuming process, with hours or days spent on
diagnostics and not data collection. A system for automatically aligning beamlines would be an invaluable tool
for beamline scientists and users alike, as it would allow for better and more rapid alignment leading to more
efficient experimentation for users. However, there are a number of challenges to applying machine learning to
beamline alignment, which is a noisy, high-dimensional optimization problem: inputs may be highly coupled,
data acquisition is not robust, and sampling inputs is slow as it requires moving motors extremely precisely.
Bayesian optimization excels in this class of optimization problem, as it performs well in high-dimensional spaces
with relatively little data, and can robustly deal with unknown levels of noise; Bayesian algorithms are also
general enough that we can tailor them to beamline optimization problems in particular. In this paper, we focus
our attention on the Tender-Energy X-ray Absorption Spectroscopy (TES) beamline at the National Synchrotron
Light Source-II (NSLS-II). We consider two components of the TES beamline: the toroidal mirror which focuses
on the secondary source aperture (SSA) and the Kirkpatrick-Baez (KB) mirror pair which focuses the beam
after the SSA. These two mirrors have orthogonal tasks of maximizing flux and spot size, respectively.

In Section 2, we give a general outline Bayesian optimization. In Section 3 we discuss specifics of applying it
to beamline alignment, and Section 4 discusses the implementation of these specifics as a set of software tools.
Section 5 tests the software on a real beamline’s digital twin. Section 6 remarks on the next steps and goals for
our beamline optimization tools.

2. BAYESIAN OPTIMIZATION IN GENERAL

Bayesian optimization iterates over the following steps in order to find the optimum for an expensive-to-sample
black box function f(x):

• Sample the data y∗ ∼ f(x∗) at some inputs x∗.
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Figure 1: The prior and posterior distributions for a process.

• Assign a prior to the function f(x) in general.

• Use Bayesian inference to compute a posterior estimate about the function at different inputs from the
data and the prior.

• Use an acquisition function to predict the next most desirable point(s) to sample.

• Repeat until optimized.

2.1 Gaussian processes

Bayesian optimization necessitates a method of computing priors and posteriors over inputs; this is typically done
with a Gaussian process. A Gaussian process is a stochastic process (random variables organized in space) where
every collection of variables is a multivariate normal distribution N (µ,Σ). As an affine transform of a Gaussian
process is also a Gaussian process, we can assume our processes have zero mean and unit variance for notational
simplicity without loss of generality. In this case, the Gaussian process is defined entirely by the covariance. In
practice, we do not know the covariance a priori, but given some samples we can find an approximation that fits
the observed data. We can model it with a function called the kernel: for two points xi and xj , we model the
covariance of the associated process variables as the output of a function k(xi, xj , θ), where θ represents a set of
hyperparameters to be optimized.

2.2 Optimizing hyperparameters

Using our kernel function K(θ)ij = k(xi, xj , θ), we fit the hyperparameters to the data y by maximizing the
marginal likelihood of the process

p
(
y | x, θ

)
=

1

(2π)n detK(θ)
exp

(
− 1

2
y⊤K(θ)−1y

)
(1)

and adopting the optimal hyperparameters

θ̂ = argmax
θ

p
(
y | x, θ

)
. (2)



2.3 Computing posteriors

Given our optimal hyperparameters, constructing the respective posterior is straightfoward; the posterior of the
value of the function at inputs x∗ given measured values at x is then the MVN distribution f(x∗) ∼ N (Af(x),B),
where

A = k(x∗,x, θ)k(x,x, θ)−1 (3)

B = k(x∗,x∗, θ)−Ak(x,x∗, θ) (4)

Figure 1 shows a set of functions randomly sampled from the prior distribution corresponding to a Gaussian

process with kernel k(xi, xj) =
|xi−xj |5/2
23/2Γ(5/2)

K5/2(| xi − xj |) (called the Matérn kernel; here K5/2 is the modified

Bessel function of the second kind of order 5/2).

2.4 Acquisition functions

Using our posterior, we can optimize an acquisition function over the inputs to figure out the most desirable
next point to sample. One acquisition function is the upper confidence bounds

UCB(x) = µ(x) + zσ(x) (5)

which values both a large expected value, as well as a large uncertainty. Another is expected improvement

EI(x) = E
[
max(f(x)− f⋆, 0)

]
=

∫ ∞

f∗
yϕ(y)dy = σ(x)

(
ϕ(z) + zΦ(z)) (6)

where z = (µ(x) − f∗)/σ(x), and ϕ(y) and Φ(y) are the PDF and CDF of the standard normal distribution.1

We can also define the probability of improvement

PI(x) = P
[
f(x) > f⋆

]
=

∫ ∞

f∗
ϕ(y)dy = Φ(z) (7)

Figure 2 shows these three acquisition function computed over the posterior in Figure 1. When optimized,
different acquisition function will prefer different inputs, and may perform better or worse in the context of
converging rapidly to an optimum.

3. BAYESIAN OPTIMIZATION FOR BEAMLINES

3.1 Latent dimensions

Beamlines have highly correlated inputs, which we may not know precisely. To model these correlations, we use
the kernel

k(xi, xj , θ) = a2f
(
|| D exp(S)

(
xi − xj

)
||
)

(8)

where f(r) is a positive-definite function, D is a diagonal matrix with positive entries, exp(·) is the matrix
exponential, and S is a skew-symmetric matrix; the entries of these matrices and the total variance a2 are
determined by the hyperparameters θ.

Figure 3 shows an example of two-dimensional kernels corresponding to different latent dimensions. Figure 4
shows the latent dimensions for a two-dimensional parameter space at the TES beamline corresponding to the
translation and rotation of a toroidal mirror.
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Figure 2: Left : a posterior condition on several observations. Right : Three different acquisition functions and
their maxima: upper confidence bound (UCB), expected improvement (EI), probability of improvement (PI)
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Figure 3: Different kernels defined by different latent dimensions; here T = D exp(S) is the matrix which
transforms the inputs into the latent space.
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Figure 4: The flux through the SSA as a function of a rotation (x-axis) and translation (y-axis) of the toroidal
mirror at the TES beamline; the two dimensions are highly coupled.
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Figure 5: Left : Observations marked as either valid (yellow) or invalid (blue). Right : A Dirichlet-based proba-
bility model predicting the validity of future observations.



3.2 Validity modeling

In a practical sense, a sample can be invalid and thus disqualified for several reasons (it could be that there is
not enough flux for a reliable estimate of the beam size, that the beam goes off the detector, there is a glitch in
the detector, etc.). We construct a model to try to classify and predict observational validity as a function of
inputs. In particular, we condition Gaussian processes to model the concentration parameters αi(x) of a Dirichlet
distribution.2 The conjugate of the resulting distribution tells us the probability of a beam being valid. Figure 5
shows the validity model for a two-dimensional parameter space of the toroidal mirror, where some points are
marked as invalid due to having insufficient flux.

3.3 Composite optimization

Bayesian optimization algorithms are capable of multi-tasking, which is to consider and optimize many aspects
at the same time. While we consider only a scalar fitness in this paper, we still use separate Gaussian process
models to predict the posterior of different aspects of the beamline: in the case of the TES beamline, this is
the total flux, the vertical beam spread, and the horizontal beam spread. Even though we combine these into
a single fitness, there is still a benefit in modeling them separately, as some aspects are independent to some
motors leading to an optimization problem with a smaller effective dimensionality. This is typically referred to
as composite optimization.

3.4 Passive degrees of freedom

Some parameters affect the beam, but cannot be reliably or directly manipulated (e.g. a drifting ring current
affecting the flux, the changing temperature and pressure of a sample, a general drifting of beam dynamics over
time, etc.). We fit to these parameters, but we don’t allow the agent to change them when it computes the
acquisition function.

4. IMPLEMENTATION

We implement our approach in the bloptools package, which establishes a user-friendly interface between the the
Bluesky acquisition framework and customized BoTorch and GPyTorch models suited to modeling beamlines.31

The Sirepo-Bluesky4 package also gives us the ability to develop code which is the same for beamlines and
their digital twins, which allows for easier deployment to real beamlines.

5. BENCHMARKING

Several different methods can be used to simulate a beamline and define its digital twin, includes wavefront
propagation,5 ray-tracing,6 reduced statistical models,7 machine-learning based methods.8 While all of these
can be used for benchmarking, we find that the best method is ray-tracing, which for a microscopy beamline
like TES can accurately and efficiently recreates the beam size and flux. In Figure 6, we show the results of
benchmarks of four different optimization problems of 2, 4, 4, and 8 dimensions respectively, utilizing different
combinations of degrees of freedom of the Kirkpatrick-Baez mirror pair and the pre-secondary source aperture
toroidal mirror of the TES beamline. For the toroidal mirror alignment we optimize the total flux of the beam
and for the KB mirrors, we try to optimize the flux density of the beam (total flux divided by area). During each
run, the agent samples quasi-randomly to get a workable estimate of the hyperparameters; for higher-dimensional
problems, we increase the number of quasi-random samples. For each of these optimization problems, the agent
is able to consistently reach the global optimum even from a substantial misalignment.

6. DISCUSSION OF FURTHER DEVELOPMENTS

Further development will involve both adding new features (e.g. the ability to dynamically select acquisition
functions during optimization and the ability to map the Pareto front) and improving the implementation of
existing features (e.g. the efficiency and robustness of hyperparameter optimization). We will also apply the
agent to more diverse alignment problems requiring more sophisticated feedback systems, such as optimizing
the focus of nanoimaging beamlines (requiring knife-edge scans) or the resolution of a spectrometer (requiring
energy scans.)

https://nsls-ii.github.io/bloptools/
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Figure 6: Four optimization problems for the TES beamline, simulating using a SHADOW (ray-tracing) backend.
Top left: KB mirror rotation (two dimensions) Top right: KB mirror rotation + translation (four dimensions)
Bottom left: pre-SSA toroidal mirror (four dimensions) Bottom right: KBs + toroid (eight dimensions)
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